首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4148篇
  免费   444篇
  国内免费   227篇
工业技术   4819篇
  2024年   9篇
  2023年   134篇
  2022年   128篇
  2021年   177篇
  2020年   219篇
  2019年   178篇
  2018年   148篇
  2017年   179篇
  2016年   170篇
  2015年   165篇
  2014年   239篇
  2013年   217篇
  2012年   311篇
  2011年   357篇
  2010年   209篇
  2009年   245篇
  2008年   218篇
  2007年   226篇
  2006年   200篇
  2005年   171篇
  2004年   144篇
  2003年   116篇
  2002年   105篇
  2001年   114篇
  2000年   89篇
  1999年   58篇
  1998年   56篇
  1997年   41篇
  1996年   33篇
  1995年   38篇
  1994年   23篇
  1993年   24篇
  1992年   17篇
  1991年   12篇
  1990年   12篇
  1989年   8篇
  1988年   3篇
  1987年   6篇
  1986年   1篇
  1985年   6篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1966年   1篇
排序方式: 共有4819条查询结果,搜索用时 46 毫秒
1.
Surface passivation treatment is a widely used strategy to resolve trap-mediated nonradiative recombination toward high-efficiency metal-halide perovskite photovoltaics. However, a lack of passivation with mixture treatment has been investigated, as well as an in-depth understanding of its passivation mechanism. Here, a systematic study on a mixed-salt passivation strategy of formamidinium bromide (FABr) coupled with different F-substituted alkyl lengths of ammonium iodide is demonstrated. It is obtained better device performance with decreasing chain length of the F-substituted alkyl ammonium iodide in the presence of FABr. Moreover, they unraveled a synergistic passivation mechanism of the mixed-salt treatment through surface reconstruction engineering, where FABr dominates the reformation of the perovskite surface via reacting with the excess PbI2. Meanwhile, ammonium iodide passivates the perovskite grain boundaries both on the surface and top perovskite bulk through penetration. This synergistic passivation engineer results in a high-quality perovskite surface with fewer defects and suppressed ion migration, leading to a champion efficiency of 23.5% with mixed-salt treatment. In addition, the introduction of the moisture resisted F-substituted groups presents a more hydrophobic perovskite surface, thus enabling the decorated devices with excellent long-term stability under a high humid atmosphere as well as operational conditions.  相似文献   
2.
A series of anionic conjugated polyelectrolytes (CPEs) is synthesized based on poly(fluorene-co-phenylene) by varying the side-chain ionic density from two to six per repeat units (MPS2-TMA, MPS4-TMA, and MPS6-TMA). The effect of MPS2, 4, 6-TMA as interlayers on top of a hole-extraction layer of poly(bis(4-phenyl)-2,4,6-trimethylphenylamine (PTAA) is investigated in inverted perovskite solar cells (PeSCs). Owing to the improved wettability of perovskites on hydrophobic PTAA with the CPEs, the PeSCs with CPE interlayers demonstrate a significantly enhanced device performance, with negligible device-to-device dependence relative to the reference PeSC without CPEs. By increasing the ionic density in the MPS-TMA interlayers, the wetting, interfacial defect passivation, and crystal growth of the perovskites are significantly improved without increasing the series resistance of the PeSCs. In particular, the open-circuit voltage increases from 1.06 V for the PeSC with MPS2-TMA to 1.11 V for the PeSC with MPS6-TMA. The trap densities of the PeSCs with MPS2,4,6-TMA are further analyzed using frequency-dependent capacitance measurements. Finally, a large-area (1 cm2) PeSC is successfully fabricated with MPS6-TMA, showing a power conversion efficiency of 18.38% with negligible hysteresis and a stable power output under light soaking for 60 s.  相似文献   
3.
《Advanced Powder Technology》2020,31(12):4585-4597
Focussing on visible light active ferrites for high performance removal of noxious pollutants, we report the synthesis of Mg0.5NixZn0.5-xFe2O4 (x = 0.1, 0.2, 0.3, 0.4, & 0.5) ferrite nanoparticle for degradation of reactive blue-19 (RB-19). Lattice parameters calculated using intense X-ray diffraction (XRD) peaks and Nelson-Riley plots (N-R plot) are in well agreement with each other. The sample Mg0.5Ni0.4Zn0.1Fe2O4 (M5N4) exhibits best performance with 99.5% RB-19 degradation in 90 min under visible light. Photoluminescence (PL) results confirm that recombination of charge carriers is highly reduced in the photocatalyst. Scavenging experiments suggest that O2 radicals were the dominant species responsible for photocatalytic performance. The photocatalytic mechanism was explained in terms of dopant driven shifting of conduction bands and valence bands (calculated by Mott-Schottky plots). The thermodynamic probability of radical generation along with role of redox cycles of metal ions has been discussed in the mechanism. The dye degradation was ascertained by detection of intermediates via mass spectrometry analysis and a possible degradation route was also predicted. The findings in this work provide intriguing opportunities to modify the electronic band structure of spinel ferrites for visible and solar light photocatalytic activity for environmental detoxification.  相似文献   
4.
《Ceramics International》2021,47(19):27050-27057
Emulsion processed polymer derived ceramic (PDC) nanobeads are used for Methylene Blue dye removal from aqueous solutions. The PDC nanobeads, produced at 600 °C and 1200 °C pyrolysis, are subsequently coated with titania (anatase). Titania-coated nanobeads show less than 35%, i.e., limited dye adsorption capability in dark. Instead, enhanced total removal efficiency (∼97%) is obtained when the initial adsorption is succeeded by photodegradation under UV. Direct reusability tests show that even after the third cycle, very high regeneration efficiencies being above 92% are observed for titania-coated nanobeads.  相似文献   
5.
6.
The glassy carbon electrode is modified by poly(brilliant cresyl blue) (PBCB) to be applied as a new green and efficient platform for Pt and Pt–Ru alloy nanoparticles deposition. Surface composition, morphology and catalytic activity of these modified electrodes towards methanol oxidation are assessed by applying X-ray diffraction, field emission scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy techniques. The X-ray diffraction patterns reveal that the highly crystalline Pt and Pt–Ru alloy and RuO2 nanoparticles with low crystallinity are deposited on the PBCB modified glassy carbon electrodes. The microscopic images indicate smaller size and better distribution of deposited nanoparticles on the surface of PBCB modified electrodes. Cyclic voltammetry and electrochemical impedance spectroscopy results reveal that PBCB supported Pt and Pt–Ru nanoparticles have better electrocatalytic performance and durability towards methanol oxidation rather than the unsupported nanoparticles. From the obtained results it can be concluded that the presence of PBCB not only improves the stability of nanoparticles on the surface, but also leads to the formation of smaller size and more uniform distribution of nanoparticles on the surface, which, in turn, cause the nanoparticles to provide a higher accessible surface area and more active centers for the oxidation of methanol. The results will be valuable in extending the applications of this polymer in surface modification steps and in developing promising catalyst supports to be applied in direct methanol fuel cells.  相似文献   
7.
8.
Behavior of Magnesium‐Alloys for Automotive Applications under Mechanical and Environmental Loading: Influence of Passivating Films and Mechanisms of Local Breakdown To assure an efficient design of components under cyclic loading, all available data concerning fatigue have to be observed. Therefore the influences of manufacturing on the material condition, the mechanical loads and environmental effects have to be analysed. Magnesium‐alloys are of special interest for lightweight applications because of their excellent strength‐density ratio. The corrosion resistance of magnesium‐alloys depends on the same factors that are critical to other metals. The alloys have a good stability to atmospheric exposure and a good resistance to attack by alkali, chromic and hydrofluoric acids. However, because of the electrochemical activity of magnesium, the relative importance of some factors is greatly amplified. The nature and composition of passive films formed on magnesium‐alloys depend on the prevailing conditions, viz. alloy‐composition, passivation potential, pH, electrolyte composition and temperature. Passive films may be damaged by local breakdown. Because of this, magnesium‐alloys suffer a degradation of their properties when exposed to an aqueous environment. The main topic of the present investigations is the verification of mechanisms of the local breakdown of the protecting film. At least two mechanisms are possible for this localization: mechanical breakdown by slip steps and electrochemical breakdown (for e.g. by the effects of chloride ions). Corrosion and passivation of different high purity alloys have been studied in different solutions (neutral, alkaline with specific anions and cations) using electrochemical techniques. The diecasted alloys were tested as produced and machined. The results clarified that depending on alloy/material and surface condition/corrosion environment different mechanisms for electrochemical breakdown of the protecting films are possible. Hence fatigue life under environmental loading is influenced by surface and testing conditions.  相似文献   
9.
Characterisation of raw materials for Portland cement manufacture by use of the methylene blue adsorption method is discussed. The method is shown to be a simple, convenient ‘rule of thumb’ procedure. It provides a guide to the quantity and type of argillaceous minerals present in a given raw material sample.  相似文献   
10.
Structural isomers of monoacylglycerols (monoglycerides, MAGs) were identified and compared after degradation of butter oil by two strains of Penicillium roquefortii and a commercial lipase from P roquefortii (EC 3.1.1.3) at pH 7.0 and 10 °C. The conditions were selected as they were comparable with those used in the manufacture of blue mould‐ripened cheese. The commercial lipase was selected to compare with the fungal strains in terms of acyl migration. Results showed that the main isomers formed by lipolysis with the commercial lipase were sn‐2 MAGs (64 mol%), whilst spores and emerging mycelia of P roquefortii produced mainly sn‐1(3) MAGs (83–90 mol%). The work reported here may lead to further assessment of different MAG structural isomers as natural preservatives in foods and dairy products. © 2002 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号